
IML++ v. 1.2

Iterative Methods Library

Reference Guide

Jack Dongarra
Oak Ridge National Laboratory and
The University of Tennessee

Andrew Lumsdaine
University of Notre Dame

Roldan Pozo
Karin A. Remington

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Applied and Computational Mathematics Division

Gaithersburg, MD 20899

QC
100

.U56

NO. 5860
1996

NIST

NISTIR 5860

IML++ v. 1.2

Iterative Methods Library

Reference Guide

Jack Dongarra
Oak Ridge National Laboratory and
The University of Tennessee

Andrew Lumsdaine
University of Notre Dame

Roldan Pozo
Karin A. Remington

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Applied and Computational Mathematics Division

Gaithersburg, MD 20899

June 1996

U.S. DEPARTMENT OF COMMERCE
Michael Kantor, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

Contents

1 Introduction 1

2 Requirements 2

3 Using IML++ 5

4 Iterative Method Library Functions 7

BiCG 8

BiCGSTAB 10

CG 12

CGS 14

CHEBY 16

GMRES 19

IR 22

QMR 24

5 References 26

A Code Listings 26

bicg.h 27

bicgstab.h 28

cg.h 30

cgs.h 31

cheby.h 32

gmres.h 33

ir.h 36

qmr.h 37

l

1 Introduction

The Iterative Methods Library, IML++, is a collection of algorithms implemented in C++ for solving

both symmetric and nonsymmetric linear systems of equations by using iterative techniques. The goal

of the package is to provide working code which separates the numerical algorithm from the details

of the matrix/vector implementation. This separation allows the same algorithm to be used without

modification
,
regardless of the specific data representation.

The programming flexibility and template facilities of C++ make it a natural choice to express high level

matrix algorithms, such as those found in Barrett et. al. [2]. For example, consider a preconditioned

conjugate gradient algorithm, used to solve Ax — b, with preconditioner M. A comparison between

the pseudo-code description of the algorithm and the body of a C++ routine used to implement the

algorithm is shown in Figure 1. Notice that in the C++ code example, no mention of a specific matrix

type (e.g. dense, sparse, distributed) is given. The operators such as * and + have been overloaded to

work with matrix and vectors formats. Thus, the code fragment represents an interface and can be used

with any matrix and vector classes which support these operations.

Initial A0
^ — b — Ax

for i — 1,2,...

solve = r (
t_1

)

Pi. x = r
(*-i)r

2(-D

if i = 1

p(!) = z(°)

else

Pi- 1 - Pi — l/Pi — 2

p(
l

) —

endif

= Ap

a-i = Pi_i/p
(l)T

g
(t)

+ Qjpl 1
)

t>(0 — _ (x
iqi 1

)

check convergence;

end }

r = b - A * x;

for (int i = 1; i < maxJ.ter; i++) {

z = M. solve(r)

;

rho = dot(r , z)

;

if (i == 1)

p = z;

else {

beta = rhol / rhoO;

p = z + p * beta;

}

q = A * p;

alpha = rhol / dot(p, q)

;

x = x + alpha * p;

r = r - alpha * q;

if (norm(r) / norm(b) < tol) break;

Figure 1: Comparison of an algorithm for the preconditioned conjugate gradient method in pseudocode

and the corresponding IML++ routine.

The following iterative methods have been incorporated into IML++:

• Richardson Iteration

• Chebyshev Iteration

• Conjugate Gradient (CG)

• Conjugate Gradient Squared (CGS)

1

• BiConjugate Gradient (BiCG)

• BiConjugate Gradient Stabilized (BiCGSTAB)

• Generalized Minimum Residual (GMRES)

• Quasi-Minimal Residual Without Lookahead (QMR)

All of these methods are designed to be used in conjunction with a preconditioner.

In addition, IML+-)- provides SparseLib++ compatible implementations of the following preconditioners:

• Diagonal

• Incomplete LU (ILU)

• Incomplete Cholesky (IC)

The functions provided are fully templated 1
,
so they can be used with any matrix and vector library

that provide the required level of functionality (see Section 2), including distributed sparse and dense

matrices. In effect, the details of the underlying data structure are separated from the mathematical

algorithm. The result is a library of high level mathematical denotations that can run on a large variety

of hardware platforms (e.g., distributed networks, multicomputers, as well as single node workstations)

without modification.

The iterative methods functions and the preconditioner functions are described in detail in Section 4.

2 Requirements

Here we give description of the specific functions that matrix and vector classes must provide in order

to be used with IML+-)-. In order to make IML++ as useful (and portable) as possible to other matrix

and/or vector packages, we have assumed only a minimal level of functionality.

To illustrate the functionality that IML++ functions require of other packages, it is helpful to look at

an example. A typical IML++- function declaration looks like this:

template < class Matrix, class Vector, class Preconditioner, class Real >
int CG

(
const Matrix& A, Vector& x, const Vector&; b, const Preconditioner& M, int& maxAter,

Real& tol
)

There are a few things to note about this declaration (which will be generic to most of the other IML++
functions). First, the function is fully templated. That is, the function can be called with any set of

arguments that are members of classes that provide a minimum level of functionality (described below).

1 There are two senses in which the word ‘templates’ is used in scientific computing. Templates as code exemplars is the
meaning used in the context of [2]. Templates in the C++ sense indicates the more formal strategy for reusing skeletal

code.

2

In fact, since the objects passed to the function are only accessed through their member functions, the

classes that are substituted for Matrix, Vector, and Preconditioner do not necessarily have to be actual

matrices and vectors at all (e.g. they may just be utilized in a matrix-vector product); they only need

to be able to carry out required interface computations listed in Figure 2.

Matrices

The Matrix class (corresponding to A in the linear system Ax = b) must supply the functions

listed in Figure 2.

The matrices in the linear systems Ax — b are accessed only through the * operator and the

trans_mult() member function. The return type in both cases is a Vector (the same type as the

supplied argument). Note that not all of the IML+4- functions will necessarily use trans_mult().

The GMRESQ routine in particular requires two matrices as input. The first (which will typically

be a sparse matrix) corresponds to the matrix in the linear system Ax = b. The second (typically

a smaller, dense matrix) corresponds to the upper Hessenberg matrix H that is constructed during

the GMRES iterations. Since the second matrix is used in a different way than the first, its

class must supply different functionality. In particular, it must have operatorQ for accessing

individual elements. For this matrix class, it is important to remember that IML+-I- uses the

C/C++ convention of 0-based indexing. That is, A (0,0) is the first component of the matrix A.

Also, the type of a single matrix entry must be compatible with the type of single vector entry.

That is, operations such asA(i,j)*x(j) must be able to be carried out. See the GMRES () man
page for more information.

Vectors

The Vector class must supply the following constructors in Figure 3, together with fundamental

operations listed in Figure 4.

IML-f-f uses the C/C+-1- convention that vectors use 0-based indexing. That is, x(0) is the first

component of the vector x. This is in contrast to Fortran, which uses 1-based indexing. Since

(presumably) all users of this package will be using it with C and/or C+-H matrices and vectors,

this assumption should not be limiting in any way.

Scalars

We use the convention that a scalar is the same type as a single component of a vector. In particular,

the dot() function must return a scalar type which is the same type as a single component of a

vector. That is, assignments of the form x(0) = dot(x, y) must be made without type conversion.

Preconditioners

The Preconditioner class can be viewed as a simple wrapper around a user-defined function. These

function may, for example, perform incomplete LU factorization, diagonal scaling, or nothing at all

(corresponding to unpreconditioned case). A preconditioner matrix M is typically used to compute

Vector <— Matrix operator* (Vector) "Matrix" by "Vector" product

Vector <— Mafrzz::trans_mult(Vector) transpose-Matrix by Vector product

Figure 2: Interface requirement for templated Matrix object.

3

Vector{) Constructor for null (zero-length) Vector

Vector(unsigned int n) Constructor for Vector of length n

Figure 3: Interface requirements for constructors of Vector class.

Vector operator=(Vector
)

Assignment of Vector to Vector

Vector < operator

=

(Scalar) Assignment of Scalar to all components of Vector

Vector <- Vector operator-)-

(

Vector) Addition

Vector <— Vector operator-

(

Vector) Subtraction

Vector Scalar operator*
(
Vector) Multiplication of Vector by Scalar

Scalar <- Vector operator()(int) Element access

Scalar <- dot [Vector, Vector
)

Vector inner product

Real «- norm(Vector) Vector norm

Figure 4: Interface requirements for Vector operations.

M~ xx or
(
MT)~ l x during the course of a basic iteration, and thus can be seen as taking some

input vector and return a corresponding vector. The corresponding C-f-f- class must therefore

provide the two fundamental capabilities listed in Figure 5.

Preconditioners are accessed only through their soive() and trans_solve() member functions.

The return type in both cases is a Vector (the same type as the supplied argument). Note that

not all all of the IML++ functions will use trans_solve().

Reals

At this time, all IML-F-f functions test the value of the residual norm against a specified tolerance

to determine convergence. The type of the tolerance variable is templated so that either float or

double can be used. The norm() function must return the Real type. Note that the elements of

a Vector class can be complex or user-defined, so that Real type may be different than the Scalar

type.

Summary

Vector <— Preconditioner::solve(Vector) solve linear system

Vector <— Preconditioner::trans_solve(Vector) solve transpose linear system

Figure 5: Interface requirements for Preconditioner class.

4

The following is a summary of necessary functions for use with IML++.

Vector

Vector()
Fecfor(unsigned int n)

Matrix operator*
(
Vector

)

Vector <— Afffltr,zz::trans_mult(Vector
)

Vector <— operator=(Vector

)

Vector <— operator=(Scalar)
Vector «- Vector operator-!-

(
Vector

)

Vector <— Vector operator-

(

Vector)

Vector <— Scalar operator*

(

Vector)

Scalar <- Vector operatorQ(int)

Scalar <- dot [Vector, Vector
)

Real <- norm(Vector
)

Vector «- Preconditioner::solve(Vector)

Vector <- Preconditioner::trans_solve(Vector
)

Note that certain “optimized” operators such as += are not used by IML++. This may cause a slight

loss of performance in certain applications. However, the advantage is increased portability of IML++.
In order to use operators like += (if your package supplies them), you should replace occurrences of

operations like x = x + y with x += y in the text of the IML++ routines.

The test programs that come with IML-H- use SparseLib++. When in doubt about the required

functionality of other matrix and/or vector packages, refer to SparseLib++.

3 Using IMLH—f-

In order to use IML++, the user must supply matrix and vector classes (the functionality for which is

described in Section 2). Typically, IML-H- will be used with the matrix; and vector packages together

in a common program. IML++ is accessed by including the appropriate header files which provide the

template declarations. The header files which provide the matrix and vector class declarations must also

be included.

As an application example, the following code listing demonstrates the use of IML++ in conjunction with

a publicly available matrix library, SparseLib++, to solve a linear system with CG. The program reads

in a matrix and right-hand side stored in Harwell-Boeing format from the file specified in argv[l]. An
initial guess of 0 is made for the solution and the system is solved using CG and a diagonal preconditioner.

The modifications to this example which would be necessary to use it with different matrix and/or vector

classes should be fairly obvious.

include <stdlib.h>

include <iostream.h>
// System includes

//

include "compcol.double.h"

include "iohb.double .

h"

include "mv_blasl_double .h"

// Compressed column matrix header

// Harwell-Boeing matrix I/O header

// MV.Vector level 1 BLAS

5

^include "diagpre_double.il" // Diagonal preconditioner

finclude "cg.h" // IML++ CG template

int

main (int argc, char * argv[])

{

if (argc < 2) {

cerr << "Usage: " << argv[0] << " HBfile " << endl;

exit (-1) ;

>

double tol = l.e-6;

int result, maxit = 150;

CompCol_Mat_double A;

readBB_mat (argv [1] , &A) ;

VECTOR.double b, x(A.dim(l), 0.0);

readHB_rhs (argv [1] , &b) ;

DiagPreconditioner_double D(A);

result = CG(A, x, b, D, maxit, tol);

// Convergence tolerance

// Maximum iterations

// Create a matrix

// Read matrix data

// Create rhs, solution vectors

// Read rhs data

// Create diagonal preconditioner

// Solve system

cout << "CG flag = " << result << endl;

cout << "iterations performed: " << maxit << endl;

cout << "tolerance achieved :
" << tol << endl;

return result;

>

The executable for this example can be made by compiling it and linking it with the object files for the

matrix and vector classes. For compilation, be sure to use appropriate compiler directives so that all

header and library files can be found.

The following is an example Makefile that could be used to create an executable file (called main) from
the code in the above example. It assumes a directory structure similar to that of the SparseLib++
distribution.

Example Makefile

The C++ compiler

CPP = g++

The architecture

ARCH = sun4

The top-level SparseLib++ directory

SPARSELIB = /usr/local/src/SparseLib++

The various include directories

IML.INCLUDE = $ (SPARSELIB) /mv/include

KV.INCLUDE = $ (SPARSELIB) /mv/include

SPARSELIB,INCLUDE = $ (SPARSELIB) /sparselb/ include

6

A list of all include directives for the compiler
INCLUDES = -I$(IML_INCLUDE) -1$ (MV.INCLUDE) -1$ (SPARSELIB_INCLUDE)

The SparseLib++ library archive file

SPARSELIB.LIB = $ (SPARSELIB) /sparselb/libs/$ (ARCH)

Libraries to be linked

LIBS = -L$(SPARSELIB_LIB) -lsparse$(CPP) -lm

Rule to create executable main from main.o

main: main.o

$(CPP) $(CPPFLAGS) -o main main.o $(LIBS)

Rule to create object main.o from main.cc

main.o: main.cc

$(CPP) $ (CPPFLAGS) $ (INCLUDE_DIRS) -c main.cc

Include dependencies

main.o: $(IML_INCLUDE)/cg.h $ (SPARSELIB_INCLUDE) /diagpre . h \

$(SPARSELIB_INCLUDE)/compcoll.h $ (SPARSELIB_INCLUDE) /readhb . h \

$ (HV_INCLUDE) /vector . h $ (MV.INCLUDE) /blasl .h

See the IML++ test directory for more examples.

4 Iterative Method Library Functions

In the following pages, we provide a detailed description of each of the iterative methods functions

available in IML++. Each function is described in turn on a “man” page. For each function, we provide

an example of its declaration, a detailed description of the function, its return values, an example of its

usage, and cross references.

7

BiCG IML++ BiCG

Name

Declaration

Description

Return
Values

Example

BiCG — BiConjugate Gradient Iteration

#include "bicg.h"

template < class Matrix, class Vector, class Preconditioner, class Real >

int BiCG
(
const Matrix& A, Vector& x, const Vector &: b,

const Preconditioned M

,

int& maxAter, Read tol
)

BiCG solves the unsymmetric linear system Ax = b using the preconditioned

BiConjugate Gradient method.

This is a fully templated function.

On input, A specifies the matrix, b the right-hand side, and x the initial guess for

the solution of the unsymmetric linear system Ax — b. In addition, M specifies

a preconditioner, maxJder specifies the maximum number of iterations that the

method will take, and tol specifies the convergence tolerance for the method.

Convergence is achieved if the normalized residual is less than the specified toler-

ance, i.e., if ||r||/||6|| < tol.

A return value of 0 indicates convergence to the specified tolerance within the

specified maximum number of iterations. A return value of 1 indicates that the

method did not reach the specified convergence tolerance in the maximum number

of iterations. A return value of 2 indicates that a breakdown occurred.

Upon return, the output arguments have the following values:

x approximate solution to Ax = b computed at the final iteration

tol the value of the ||r||/||6|| achieved after the final iteration

maxJder the number of iterations performed before return

The following example program uses IML++ in conjunction with SparseLib++ to

solve a linear system with BiCG. The program reads in a matrix and right-hand

side stored in Harwell-Boeing format from the file specified in argv[l]. An initial

guess of 0 is made for the solution and the system is solved using BiCG and a

diagonal preconditioner.

tinclude <stdlib.h> //

#include <iostream.h> //

#include "compcol_double .h" //

include "iohb_double .h" //

#include "mv_blasl_double .

h"
//

include "diagpre_double . h" //

#include "bicg .

h"
//

1 BLAS

// IML++ BiCG template

Version 1.2 8 June 27, 1996

BiCG IML++ BiCG

int

main (int argc, char * argv[])

if (argc < 2) {

cerr << "Usage: " << argv[0] <<

exit (-1)

;

>

double tol = l.e-6;

int result, maxit = 150;

CompCol_Mat_double A;

readHB_mat (argv[l] , &A) ;

VECTOR.double b, x(A.dim(l), 0.0);

readHB_rhs(argv[l] , &b)

;

DiagPreconditioner_double D(A);

HBfile " << endl;

// Convergence tolerance

// Maximum iterations

// Create a matrix

// Read matrix data

// Create rhs, solution vectors

// Read rhs data

// Create diagonal preconditioner

result = BiCG(A, x, b, D, max it , tol); // Solve system

cout << "BiCG flag = " << result « endl;

cout << "iterations performed: " << maxit << endl;

cout << "tolerance achieved :
" << tol << endl;

return result;

>

See Also SparseLib++

DiagPreconditioner

R. BARRETT ET AL., Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods
,
SIAM Press, Philadelphia, 1994.

R. FLETCHER, Conjugate gradient methods for indefinite systems, in Numerical

Analysis Dundee 1975, G. Watson, ed., Springer Verlag, Berlin, New York, 1976,

pp. 73-89.

Version 1.2 9 June 27, 1996

BiCGSTAB IML++ BiCGSTAB

Name

Declaration

Description

Return
Values

Example

BiCGSTAB — BiConjugate Gradient Iteration Stabilized

#include "bicgstab.h"

template < class Matrix

,

class Vector, class Preconditioner, class Real >

int BiCGSTAB
(
const Matrix& A, Vector& x, const Vector^ b,

const Preconditioned M

,

int& maxAter, Read tol
)

BiCGSTAB solves the unsymmetric linear system Ax = b using the precondi-

tioned BiConjugate Gradient Stabilized method.

This is a fully templated function.

On input, A specifies the matrix, b the right-hand side, and x the initial guess for

the solution of the unsymmetric linear system Ax = b. In addition, M specifies

a preconditioner, maxAter specifies the maximum number of iterations that the

method will take, and tol specifies the convergence tolerance for the method.

Convergence is achieved if the normalized residual is less than the specified toler-

ance, i.e., if ||r||/||6|| < tol.

A return value of 0 indicates convergence to the specified tolerance within the

specified maximum number of iterations. A return value of 1 indicates that the

method did not reach the specified convergence tolerance in the maximum number

of iterations. A return value of 2 indicates that a breakdown occurred with =
(r,rl~ 1

)
= 0. A return value of 3 indicates that a breakdown occurred with Ui —

(t,s)/(t,t) = 0.

Upon return, the output arguments have the following values:

x approximate solution to Ax — b computed at the final iteration

tol the value of the ||r||/||6|| achieved after the final iteration

maxAter the number of iterations performed before return

The following example program uses IML+-f in conjunction with SparseLib++ to

solve a linear system with BiCGSTAB. The program reads in a matrix and right-

hand side stored in Harwell-Boeing format from the file specified in argv [l] . An ini-

tial guess of 0 is made for the solution and the system is solved using BiCGSTAB
and a diagonal preconditioner.

#include <stdlib.h> // System includes

#include <iostream .h> //

#include "compcol_double .h" // Compressed column matrix header
#include "iohb_double .h" // Harwell-Boeing matrix I/O header
#include "mv_blasl_double .h" // MV.Vector level 1 BLAS

Version 1.2 10 June 27, 1996

BiCGSTAB IML++ BiCGSTAB

#include "diagpre_double.h"

#include "bicgstab.h"

// Diagonal preconditioner

// IML++ BiCGSTAB template

int

main (int argc, char * argv[])

{

if (argc < 2) {

cerr << "Usage: " << argv[0] << "

exit (-1)

;

}

double tol = l.e-6;

int result, maxit = 150;

CompCol_Mat_double A;

readHB_mat(argv[l] , &A) ;

VECTOR.double b, x(A.dim(l), 0.0);

readHB_rhs (argv [1] , &b) ;

DiagPreconditioner_double D (A)

;

HBfile " « endl

;

// Convergence tolerance

// Maximum iterations

// Create a matrix

// Read matrix data

// Create rhs, solution vectors

// Read rhs data

// Create diagonal preconditioner

result = BiCGSTAB(A, x, b, D, maxit, tol); // Solve system

cout << "BiCGSTAB flag = " << result << endl;

cout << "iterations performed: " << maxit << endl;

cout << "tolerance achieved :
" << tol << endl;

return result

;

>

See Also SparseLib++

DiagPreconditioner

R. BARRETT ET AL., Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods

,

SIAM Press, Philadelphia, 1994.

H. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-

CG for for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist.

Comput., 13 (1992), pp. 631-644.

Version 1.2 11 June 27, 1996

CG IML++ CG

Name

Declaration

Description

Return
Values

Example

CG — Conjugate Gradient Iteration

#include "cg.h"

template < class Matrix, class Vector, class Preconditioner
,
class Real >

int CG
(
const Matrix& A, Vector& x, const Vector& b,

const Preconditioned M, int& max-iter

,

Read tol
)

CG solves the symmeteric positive-definite linear system Ax — b using the precon-

ditioned Conjugate Gradient method.

This is a fully templated function.

On input, A specifies the matrix, b the right-hand side, and x the initial guess for

the solution of the unsymmetric linear system Ax = b. In addition, M specifies

a preconditioner, max.iter specifies the maximum number of iterations that the

method will take, and tol specifies the convergence tolerance for the method.

Convergence is achieved if the normalized residual is less than the specified toler-

ance, i.e.
,
if ||t*||/||6|| < tol.

A return value of 0 indicates convergence to the specified tolerance within the

specified maximum number of iterations. A return value of 1 indicates that the

method did not reach the specified convergence tolerance in the maximum number
of iterations.

Upon return, the output arguments have the following values:

x approximate solution to Ax = b computed at the final iteration

tol the value of the ||r||/||£>|| achieved after the final iteration

maxJder the number of iterations performed before return

The following example program uses IML++ in conjunction with SparseLib-|—1- to

solve a linear system with CG. The program reads in a matrix and right-hand side

stored in Harwell-Boeing format from the file specified in argv[l] . An initial guess

of 0 is made for the solution and the system is solved using CG and a diagonal

preconditioner.

#include <stdlib.h> // System includes
#include <iostream ,h> //

#include "compcol_double .

h"
// Compressed column matrix header

#include "iohb_double .h" // Harwell-Boeing matrix I/O header
#include "mv_blasl_double .h" // MV_Vector level 1 BLAS
#include " icpre_double .

h"
// Diagonal preconditioner

itinclude "cg.h" // IML++ CG template

Version 1.2 12 June 27, 1996

CG IML++ CG

int

main (int argc, char * argv[])

{

if (argc < 2) {

cerr << "Usage: " << argv[0] << "

exit (-1) ;

>

double tol = l.e-6;

int result, maxit = 150;

CompCol_Mat_double A;

readHB_mat(argv[l] , &A) ;

VECT0R_double b, x(A.dim(l), 0.0);

readHB_rhs(argv[l] , &b)

;

ICPreconditioner_double H(A);

result = CG(A, x, b, M, maxit, tol)

HBfile " « endl

;

// Convergence tolerance

// Maximum iterations

// Create a matrix

// Read matrix data

// Create rhs , solution vectors

// Read rhs data

// Create IC preconditioner

// Solve system

cout << "CG flag = " << result << endl;

cout << "iterations performed: " << maxit << endl;

cout << "tolerance achieved :
" << tol << endl;

return result;

>

See Also SparseLib+4-

ICPreconditioner

R. Barrett ET al., Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods, SIAM Press, Philadelphia, 1994.

G. H. Golub and C. F. Van Loan, Matrix Computations, The John Hopkins

University Press, Baltimore, Maryland, 1983.

M. R. HESTENES AND E. Stiefel, Methods of conjugate gradients for solving

linear systems, Journal of Research of the National Bureau of Standards, 49 (1952),

pp. 409-436.

Version 1.2 13 June 27, 1996

CGS IML++ CGS

Name

Declaration

Description

Return
Values

Example

CGS — Conjugate Gradient Squared Iteration

#include "cgs.h"

template < class Matrix

,

class Vector, class Preconditioner, class Real >
int CGS

(
const Matrix& A, Vector& x, const Vector& b,

const Preconditioned M, int& max.iter, Read tol
)

CGS solves the unsymmetric linear system Ax = b using the preconditioned Con-

jugate Gradient Squared method.

This is a fully templated function.

On input, A specifies the matrix, b the right-hand side, and x the initial guess for

the solution of the unsymmetric linear system Ax = b. In addition, M specifies

a preconditioner, maxJder specifies the maximum number of iterations that the

method will take, and tol specifies the convergence tolerance for the method.

Convergence is achieved if the normalized residual is less than the specified toler-

ance, i.e., if ||r||/||6|| < tol.

A return value of 0 indicates convergence to the specified tolerance within the

specified maximum number of iterations. A return value of 1 indicates that the

method did not reach the specified convergence tolerance in the maximum number
of iterations. A return value of 2 indicates that a breakdown occurred.

Upon return, the output arguments have the following values:

x approximate solution to Ax = b computed at the final iteration

tol the value of the ||r||/||6|| achieved after the final iteration

max.iter the number of iterations performed before return

The following example program uses IML+-(- in conjunction with SparseLib+4- to

solve a linear system with CGS. The program reads in a matrix and right-hand side

stored in Harwell-Boeing format from the file specified in argv[l]. An initial guess

of 0 is made for the solution and the system is solved using CGS and a diagonal

preconditioner.

#include <stdlib . h> //

#include <iostream.h> //

include "compcol_double .h" //

#include "iohb_double .h" //

#include "mv_blasl_double .h" //

#include "diagpre_double .

h"
//

#include "cgs.h" //

System includes

Compressed column matrix header
Harwell-Boeing matrix I/O header
MV_Vector level 1 BLAS

Diagonal preconditioner

IML++ CGS template

Version 1.2 14 June 27, 1996

CGS IML++ CGS

See Also

Version 1.2

int

main (int axgc, char * argv[])

{

if (argc < 2) {

cerr << "Usage: " << argv[0] << "

exit (-1) ;

>

double tol = l.e-6;

int result, maxit = 150;

CompCol_Mat_double A;

readHB_mat (argv[l] , &A) ;

VECT0R_double b, x(A.dim(l), 0.0);

readHB_rhs(argv[l] , &b)

;

DiagPreconditioner_double D(A);

result = CGS(A, x, b, D, maxit, to]

HBfile " « endl

;

// Convergence tolerance

// Maximum iterations

// Create a matrix

// Read matrix data

// Create rhs, solution vectors

// Read rhs data

// Create diagonal preconditioner

// Solve system

cout << "CGS flag = " << result << endl;

cout << "iterations performed: " << maxit << endl;

cout << "tolerance achieved :
" << tol << endl;

return result;

>

SparseLib++

DiagPreconditioner

R. BARRETT ET al., Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods
,
SIAM Press, Philadelphia, 1994.

P. SoNNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric linear systems,

SIAM J. Sci. Statist. Comput., 10 (1989), pp. 36-52.

15 June 27, 1996

CHEBY IML++ CHEBY

Name CHEBY — Chebyshev Iteration

Declaration ^include "cheby.h"

template < class Matrix
,
class Vector, class Preconditioner

,
class Real,

class Type >
int CHEBY

(
const Matrix&; A, Vector&: x, const Vector& b,

const Preconditioned M, int& maxAter, Read tol,

Type eigmin, Type eigmax
)

Description CHEBY solves the unsymmetric linear system Ax = b using the preconditioned

Chebyshev iteration.

This is a fully templated function.

On input, A specifies the matrix, b the right-hand side, and x the initial guess

for the solution of the unsymmetric linear system Ax = b. In addition, M spec-

ifies a preconditioner, max.iter specifies the maximum number of iterations that

the method will take, and tol specifies the convergence tolerance for the method.

Finally, the parameters eigmin and eigmax are parameters provided to estimate

an ellipse containing the spectrum of A. In the case of positive-definite A, these

parameters are real and correspond to estimates of the minimal and maximal eigen-

values of A, respectively. Note that poor estimates for these values can cause poor

convergence behavior (including divergence).

Convergence is achieved if the normalized residual is less than the specified toler-

ance, i.e., if IHI/II&H < tol.

Return
Values

A return value of 0 indicates convergence to the specified tolerance within the

specified maximum number of iterations. A return value of 1 indicates that the

method did not reach the specified convergence tolerance in the maximum number
of iterations.

Upon return, the output arguments have the following values:

x approximate solution to Ax = b computed at the final iteration

tol the value of the ||r
,

||/||6|| achieved after the final iteration

maxJder the number of iterations performed before return

Example The following example program uses IML++ in conjunction with SparseLib++ to

solve a linear system with CHEBY. The program reads in a matrix and right-hand

side stored in Harwell-Boeing format from the file specified in argv[l]. An initial

guess of 0 is made for the solution and the system is solved using CHEBY and a

diagonal preconditioner. The parameters eigmin and eigmax for this example are

chosen based on an 8 x 8 discretization of the two-dimensional Poisson problem on

the unit square.

Version 1.2 16 June 27, 1996

CHEBY IML++ CHEBY

See Also

Version 1.2

#include <stdlib .h> //

#include <iostresun.h> //

#include "compcol_double.h" //

#include "iohb_double .h" //

#include "mv_blasl_double .h" //

#include "diagpre_double .
h"

//

ftinclude "cheby. h" //

int

main (int

f

arge , char * argv [])

System includes

Compressed column matrix header

Haxwell-Boeing matrix I/O header

MV_Vector level 1 BLAS

Diagonal preconditioner

IML++ Cheby template

if (surge < 2) {

cerr << "Usage: " << strgv[0] << " HBfile " << endl;

exit (-1)

;

>

double tol = l.e-6;

int result, maxit = 300;

double mineig = .01;

double maxeig = 3;

CompCol_Mat_double A;

readHB_mat(argv[l] , &A)

;

VECTOR.double b, x(A.dim(l), 0.0);

readHB_rhs(argv[l] , &b)

;

DiagPreconditioner_double D(A);

// Convergence tolerance

// Maximum iterations

// eigenvalue information

// (this info for Ia2d8 example)

// Create a matrix

// Read matrix data

// Create rhs, solution vectors

// Read rhs data

// Create diagonal preconditioner

result = CHEBY(A, x, b, D, maxit, tol, mineig, maxeig); // Solve system

cout << "cheby flag = " << result << endl;

cout << "iterations performed: " << maxit << endl;

cout << "tolerance achieved :
" << tol << endl;

return result;

}

SparseLib++

DiagPreconditioner

S. Ashby, CHEBYCODE: A Fortran implementation of Manteuffel’s adaptive

Chebyshev algorithm, Tech. Report UIUCDCS-R-85-1203, University of Illinois,

1985.

R. Barrett et al., Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods, SIAM Press, Philadelphia, 1994.

G. H. Golub and C. F. Van Loan, Matrix Computations, The John Hopkins

University Press, Baltimore, Maryland, 1983.

17 June 27, 1996

CHEBY IML++ CHEBY

T. Manteuffel, The Tchebychev iteration for nonsymmetric linear systems
,
Nu-

mer. Math., 28 (1977), pp. 307-327.

Version 1.2 18 June 27, 1996

GMRES IML++ GMRES

Name GMRES — Generalized Minimum Residual Iteration

Declaration #include "gmres.h"

template < class SMatrix, class Vector
,
class Preconditioner

,

class DMatrix,

class Real >
int GMRES

(
const SMatrix& A, Vector& z, const Vector& b,

const Preconditioned M

,

DMatrix& H
,
int& m,

int& maxJder, Read tol
)

Description GMRES solves the unsymmetric linear system Ax — b using the preconditioned

Generalized Minimum Residual method.

This is a fully templated function.

On input, A specifies the matrix, b the right-hand side, and x the initial guess for

the solution of the unsymmetric linear system Ax — b. In addition, M specifies a

preconditioner, H specifies a matrix to hold the coefficients of the upper Hessenberg

matrix constructed by the GMRES iterations, m specifies the number of iterations

for each restart, max-iter specifies the maximum number of iterations that the

method will take, and tol specifies the convergence tolerance for the method. Note

that the size of H must be at least mxm.

GMRES () requires two matrices as input, A and H. The matrix A (which will

typically be a sparse matrix) corresponds to the matrix in the linear system Ax = b.

The matrix H (which will typically be a dense matrix) corresponds to the upper

Hessenberg matrix H that is constructed during the GMRES iterations. Within

GMRES, H is used in a different way than A, soits class must supply different

functionality. That is, A is only accessed through its matrix-vector and transpose-

matrix-vector multiplication functions. On the other hand, GMRES solves a (dense

upper triangular) linear system of equations based on H

.

Therefore, the class to

which H belongs (DMatrix) must provide operator() for element access. For this

matrix class, it is important to remember that IML++ uses the C/C+-1- convention

that matrices use 0-based indexing. That is, A(0,0) is the first component of the

matrix A. Also, the type of a single matrix entry must be compatible with the type

of single vector entry. That is, operations such as A(i,j)*x(j) must be able to be

carried out.

Convergence is achieved if the normalized residual is less than the specified toler-

ance, i.e., if ||r||/||6|| < tol.

Return
Values

A return value of 0 indicates convergence to the specified tolerance within the

specified maximum number of iterations. A return value of 1 indicates that the

method did not reach the specified convergence tolerance in the maximum number

of iterations.

Upon return, the output arguments have the following values:

Version 1.2 19 June 27, 1996

GMRES IML++ GMRES

Example

x approximate solution to Ax = b computed at the final iteration

tol the value of the ||r||/||6|| achieved after the final iteration

max-iter the number of iterations performed before return

H the upper triangular factor of the upper Hessenberg

matrix constructed by GMRES

The following example program uses IML++ in conjunction with SparseLib++ to

solve a linear system with GMRES. The program reads in a matrix and right-hand

side stored in Harwell-Boeing format from the file specified in argv[l]. An initial

guess of 0 is made for the solution and the system is solved using GMRES and

a diagonal preconditioner. A restart value of 32 is used. The matrix A is a sparse

matrix and H is a dense matrix.

#include <stdlib.h>

#include <iostream.h>
// System includes

//

include
include
include
include

"compcol_double .h"

"iohb.double.h"

"mv_blasl_double .h"

" ilupre_double .

h"

// Compressed column matrix header

// Harwell-Boeing matrix I/O header

// MV.Vector level 1 BLAS

// Diagonal preconditioner

include MATRIX.H

include "gmres.h"

// MV_Matrix dense matrix header

// IML++ GMRES template

int

main (int argc, char * argv[])

{

if (argc < 2) {

cerr << "Usage: " << argv[0] << " HBfile "

exit (-1)

;

}

<< endl;

double tol = l.e-6;

int result, maxit = 150, restart = 32;

CompCol_Mat_double A;

readHB_mat(argv[l] , &A)

;

VECT0R_double b, x(A.dim(l), 0.0);

readHB_rhs(argv[l] , &b)

;

MATRIX_double H(restart+1, restart, 0.

CompCol_ILUPreconditioner_double M(A)

;

result = GMRES(A, x, b, M, H, restart.

// Convergence tolerance

// Maximum, restart iterations

// Create a matrix

// Read matrix data

// Create rhs, solution vectors

// Read rhs data

)) ; // storage for upper Hessenberg H

// Create ILU preconditioner

maxit, tol); // Solve system

cout << "GMRES flag = " << result << endl;

cout << "iterations performed: " << maxit << endl;

cout << "tolerance achieved :
" << tol << endl;

Version 1.2 20 June 27, 1996

GMRES IML++ GMRES

return result;

>

See Also SparseLib++

ILUPreconditioner

R. BARRETT ET AL., Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods
,
SIAM Press, Philadelphia, 1994.

Y. Saad AND M. SCHULTZ, GMRES: A generalized minimum residual algorithm

for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986),

pp. 856-869.

Version 1.2 21 June 27, 1996

IR IML++ IR

Name

Declaration

Description

Return
Values

Example

IR — Richardson Iteration

^include "ir.h"

template < class Matrix
,
class Vector

,
class Preconditioner

,
class Real >

int IR
(
const Matrix& A

,
Vector& x, const Vector& b,

const Preconditioner& M, int& max-iter, Real& tol
)

IR solves the unsymmetric linear system Ax — h using the preconditioned Richard-

son method.

This is a fully templated function.

On input, A specifies the matrix, b the right-hand side, and x the initial guess for

the solution of the unsymmetric linear system Ax = b. In addition, M specifies

a preconditioner, maxJder specifies the maximum number of iterations that the

method will take, and tol specifies the convergence tolerance for the method.

Convergence is achieved if the normalized residual is less than the specified toler-

ance, i.e., if ||r||/||&|| < tol.

The iterative refinement algorithm is realized by taking A to be the preconditioner

(assuming class to which A belongs has a solve() member function).

A return value of 0 indicates convergence to the specified tolerance within the

specified maximum number of iterations. A return value of 1 indicates that the

method did not reach the specified convergence tolerance in the maximum number

of iterations.

Upon return, the output arguments have the following values:

x approximate solution to Ax = b computed at the final iteration

tol the value of the ||r||/||&|| achieved after the final iteration

maxJter the number of iterations performed before return

The following example program uses IML-f-f- in conjunction with SparseLib++ to

solve a linear system with IR. The program reads in a matrix and right-hand side

stored in Harwell-Boeing format from the file specified in argv[l] . An initial guess

of 0 is made for the solution and the system is solved with IR and a diagonal

preconditioner, i.e., with the Gauss-Jacobi iteration.

#include <stdlib.h> //

#include <iostream.h> //

#include "compcol_double .h" //

#include "iohb_double .h" //

#include "mv_blasl_double .h" //

System includes

Compressed column matrix header

Harwell-Boeing matrix I/O header

MV_Vector level 1 BLAS

Version 1.2 22 June 27, 1996

IR IML++ IR

include "diagpre_double .h" // Diagonal preconditioner

include "ir.h" // IML++ IR template

int

main (int argc, char * argv[])

{

if (argc < 2) {

cerr << "Usage: " << argv[0] << " HBfile " << endl;

exit (-1)

;

>

double tol = l.e-6;

int result, maxit = 300;

CompCol.Mat.double A;

readHB_mat(argv[l] , &A) ;

VECT0R_double b, x(A.dim(l), 0.0);

readHB_rhs(argv[l] , feb)

;

DiagPreconditioner.double D(A);

result = IR(A, x, b, D, maxit, tol);

cout << "IR flag = " << result << endl;

cout << "iterations performed: " << maxit << endl;

cout << "tolerance achieved :
" << tol << endl;

return result

;

>

// Convergence tolerance

// Maximum iterations

// Create a matrix

// Read matrix data

// Create rhs, solution vectors

// Read rhs data

// Create diagonal preconditioner

// Solve system

See Also SparseLib++

DiagPreconditioner

R. Barrett ET al., Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods, SIAM Press, Philadelphia, 1994.

R. S. Varga, Matrix Iterative Analysis, Automatic Computation Series, Prentice-

Hall Inc, Englewood Cliffs, New Jersey, 1962.

Version 1.2 23 June 27, 1996

QMR IML++ QMR

Name

Declaration

Description

Return
Values

Example

QMR — Quasi Minimal Residual Iteration (Without Look Ahead)

^include "qmr.h"

template < class Matrix

,

class Vector

,

class Preconditioner1

,

class Preconditioner2
,
class Real >

int QMR
(
const Matrix& A, Vector& x, const Vector& b,

const Preconditioned Ml, const Preconditioned M2,
int& max-iter, Read tol

)

QMR solves the unsymmetric linear system Ax = b using the preconditioned

Quasi-Minimal Residual method.

This is a fully templated function.

On input, A specifies the matrix, b the right-hand side, and x the initial guess for

the solution of the unsymmetric linear system Ax = b. In addition, Ml and M2
specify preconditioners, max-iter specifies the maximum number of iterations that

the method will take, and tol specifies the convergence tolerance for the method.

Convergence is achieved if the normalized residual is less than the specified toler-

ance, i.e., if ||r||/|| 6
||
< tol.

A return value of 0 indicates convergence to the specified tolerance within the spec-

ified maximum number of iterations. A return value of 1 indicates that the method

did not reach the specified convergence tolerance in the maximum number of iter-

ations. A return value of 2 indicates that a breakdown associated with p occurred.

A return value of 3 indicates that a breakdown associated with (3 occurred. A
return value of 4 indicates that a breakdown associated with 7 occurred. A return

value of 5 indicates that a breakdown associated with 6 occurred. A return value

of 6 indicates that a breakdown associated with e occurred. A return value of 7

indicates that a breakdown associated with £ occurred.

Upon return, the output arguments have the following values:

x approximate solution to Ax = b computed at the final iteration

tol the value of the ||r||/||i>|| achieved after the final iteration

max-iter the number of iterations performed before return

The following example program uses IML++ in conjunction with SparseLib++

to solve a linear system with QMR. The program reads in a matrix and right-

hand side stored in Harwell-Boeing format from the file specified in argv[l]. An
initial guess of 0 is made for the solution and the system is solved using QMR and

diagonal preconditioners.

#include <stdlib.h> // System includes

Version 1.2 24 June 27, 1996

QMR IML++ QMR

See Also

Version 1.2

#include <iostream.h> //

#include "compcol_double.h" //

#include "iohb_double .h" //

itinclude "mv_blasl_double .h" //

#include "diagpre_double .h" //

ftinclude "qmr.h" //

int

main (int argc, char * axgv[])

-C

if (argc < 2) {

cerr << "Usage: " << argv[0] << " HBfile "

exit (-1)

;

>

double tol = l.e-6; //

int result, maxit = 150; //

CompCol_Mat_double A; //

readHB_mat (argv [1] , &A) ; //

VECTOR.double b, x(A.dim(l), 0.0); //

readHB_rhs(argv[l] , ftb) ; //

DiagPreconditioner_double D (A) ; //

Compressed column matrix header

Harwell-Boeing matrix I/O header

MV.Vector level 1 BLAS

Diagonal preconditioner

IML++ QMR template

<< endl;

Convergence tolerance

Maximum iterations

Create a matrix

Read matrix data

Create rhs, solution vectors

Read rhs data

Create diagonal preconditioner

result = QMR(A, x, b, D, D, maxit, tol); // Solve system

cout << "QMR flag = " << result << endl;

cout << "iterations performed: " << maxit « endl;

cout << "tolerance achieved :
" << tol << endl;

return result

;

>

SparseLib++

DiagPreconditioner

R. Barrett ET al., Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods
,
SIAM Press, Philadelphia, 1994.

R. W. FREUND AND N. M. Nachtigal, A quasi-minimal residual method for

non-Hermition linear systems, Numer. Math., 60 (91), pp. 315-339.

25 June 27, 1996

5 References

[1] S. ASHBY, CHEBYCODE: A Fortran implementation of Manteuffel’s adaptive Chebyshev algorithm
,

Tech. Report UIUCDCS-R-85-1203, University of Illinois, 1985.

[2] R. Barrett et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative

Methods
,
SIAM Press, Philadelphia, 1994.

[3] R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical Analysis Dundee

1975, G. Watson, ed., Springer Verlag, Berlin, New York, 1976, pp. 73-89.

[4] R. W. FREUND AND N. M. Nachtigal, A quasi-minimal residual method for non-Hermition

linear systems, Numer. Math., 60 (91), pp. 315-339.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations, The John Hopkins University Press,

Baltimore, Maryland, 1983.

[6] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J.

Res. Nat. Bur. Standards, 49 (1952), pp. 409-436.

[7] T. MANTEUFFEL, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math., 28

(1977), pp. 307-327.

[8] J. MEIJERINK AND H. A. van der Vorst, An iterative solution method for linear systems of

which the coefficient matrix is a symmetric M -matrix, Math. Comp., 31 (1977), pp. 148-162.

[9] Y. Saad AND M. Schultz, GMRES: A generalized minimum residual algorithm for solving non-

symmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

[10] P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci.

Statist. Comput., 10 (1989), pp. 36-52.

[11] H. van DER Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for for the

solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631-644.

[12] R. S. Varga, Matrix Iterative Analysis, Automatic Computation Series, Prentice-Hall Inc, Engle-

wood Cliffs, New Jersey, 1962.

A Code Listings

To demonstrate the elegance and power of using C+-1- for scientific computing, we include the complete

text of each iterative method function in the following appendix. Note that in most cases, each function

is completely specified on a single page.

26

bicg.h IML++ bicg.h

Name

Code

bicg.h — BiConjugate Gradient Iteration template header file

template < class Matrix, class Vector, class Preconditioner, class Real >

int BiCG (const Matrix &A, Vector &x, const Vector &b,

const Preconditioner &M, int &max_iter, Real &tol)

{

Real resid;

Vector rho_l(l) , rho_2(l), alpha(l), beta(l);

Vector z, ztilde, p, ptilde, q, qtilde;

Real normb = norm(b)

;

Vector r = b - A * x;

Vector rtilde = r;

if (normb == 0.0)

normb = 1

;

if ((resid = norm(r) / normb) <= tol) {

tol = resid;

max_iter = 0;

return 0;

>

for (int i = 1; i <= max_iter; i++) {

z = M. solve (r)

;

ztilde = M.trans_solve(rtilde)

;

rho_l(0) = dot(z, rtilde);

if (rho_l(0) == 0) {

tol = norm(r) / normb;

max_iter = i;

return 2;

>

if (i == 1) {

p = z;

ptilde = ztilde;

} else {

beta(0) = rho_l(0) / rho_2(0);

p = z + beta(0) * p;

ptilde = ztilde + beta(0) * ptilde;

>

q = A * p;

qtilde = A . trans_mult (ptilde)

;

alpha (0) = rho_l(0) / dot (ptilde, q)

;

x += alpha(0) * p;

r -= alpha(0) * q;

rtilde -= alpha(0) * qtilde;

rho_2(0) = rho_l(0);

if ((resid = norm(r) / normb) < tol) {

tol = resid;

max_iter = i;

return 0;

>

>

tol = resid;

return 1

;

Version 1.2 27 June 27, 1996

bicgstab.h IML++ bicgstab.h

Name bicgsta.h — BiConjugate Gradient Stabilized Iteration template header file

Code template < class Matrix, class Vector, class Preconditioner, class Real >

int BiCGSTAB (const Matrix &A, Vector &x, const Vector &b,

const Preconditioner SfcM, int &max_iter, Real &tol)

{

Real resid;

Vector rho_l(l), rho_2(l), alpha(l), beta(l) , omega(l);

Vector p, phat, s, shat, t, v;

Real normb = norm(b)

;

Vector r = b - A * x;

Vector rtilde = r;

if (normb == 0.0)

normb = 1

;

if ((resid = norm(r) / normb) <= tol) {

tol = resid;

max_iter = 0;

return 0;

>

for (int i = 1; i <= max_iter; i++) {

rho_l(0) = dot (rtilde, r)

;

if (rho_l(0) == 0) {

tol = norm(r) / normb;

return 2;

>

if (i == 1)

P = r;

else {

beta(0) = (rho_l (0) /rho_2 (0)) * (alpha(0) /omega(O))

;

p = r + beta(0) * (p - omega(O) * v)

;

}

phat = M. solve (p);

v = A * phat

;

alpha(0) = rho_l(0) / dot(rtilde, v)

;

s = r - alpha(0) * v;

if ((resid = norm (s) /normb) < tol) {

x += alpha (0) * phat;

tol = resid;

return 0;

>

shat = M.solve(s);

t = A * shat;

omega = dot(t,s) / dot(t,t);

x += alpha (0) * phat + omega (0) * shat;

r = s - omega(0) * t;

rho_2(0) = rho_l(0);

if ((resid = norm(r) / normb) < tol) {

tol = resid;

max_iter = i;

return 0;

}

Version 1.2 28 June 27, 1996

bicgstab.h IML++ bicgstab.h

if (omega(O) == 0) {

tol = norm(r) / normb;

return 3;

>

>

tol = resid;

return 1;

Version 1.2 29 June 27, 1996

cg.h IML++ cg.h

Name cg.h — Conjugate Gradient Iteration template header file

Code template < class Matrix, class Vector, class Preconditioner, class Real >

int CG(const Matrix &A, Vector &x, const Vector &b,

const Preconditioner &M, int &max_iter, Real &tol)

{

Real resid;

Vector p, z, q;

Vector alpha(l), beta(l), rho(l), rho_l(l);

Real normb = norm(b) ;

Vector r = b - A*x;

if (normb == 0.0)

normb = 1;

if ((resid = norm(r) / normb) <= tol) {

tol = resid;

max_iter = 0;

return 0;

>

for (int i = 1; i <= max_iter; i++) {

z = M.solve(r)

;

rho(0) = dot(r, z) ;

if (i == 1)

P = z;

else {

beta(0) = rho(0) / rho_l(0);

p = z + beta(0) * p;

}

q = A*p;

alpha(0) = rho(0) / dot(p, q) ;

x += alpha(0) * p;

r -= alpha(0) * q;

if ((resid = norm(r) / normb) <= tol) {

tol = resid;

max_iter = i;

return 0;

>

rho_l(0) = rho(0);

}

tol = resid;

return 1 ;

>

Version 1.2 30 June 27, 1996

cgs.h IML++ cgs.h

Name

Code

cgs.h — Conjugate Gradient Squared Iteration template header file

template < class Matrix, class Vector, class Preconditioner, class Real >

int CGS (const Matrix &A, Vector &x, const Vector &b,

const Preconditioner &M, int &max_iter, Real fttol)

{

Real resid;

Vector rho_l(l), rho_2(l), alpha(l), beta(l);

Vector p, phat, q, qhat , vhat, u, uhat;

Real normb = norm(b)

;

Vector r = b - A*x;

Vector rtilde = r;

if (normb == 0.0)

normb = 1;

if ((resid = norm(r) / normb) <= tol) (

tol = resid;

max_iter = 0;

return 0;

}

for (int i = 1; i <= max_iter; i++) {

rho_l(0) = dot (rtilde, r) ;

if (rho_l(0) == 0) {

tol = norm(r) / normb;

return 2;

>

if (i == 1) {

u = r;

p = u;

} else {

beta(0) = rho_l(0) / rho_2(0);

u = r + beta(0) * q;

p = u + beta(0) * (q + beta(0) * p)

;

}

phat = M. solve (p)

;

vhat = A*phat

;

alpha(0) = rho_l(0) / dot(rtilde, vhat);

q = u - alpha (0) * vhat;

uhat = M. solve (u + q)

;

x += alpha(0) * uhat;

qhat = A * uhat

;

r -= alpha(0) * qhat;

rho_2(0) = rho_l(0);

if ((resid = norm(r) / normb) < tol) {

tol = resid;

max_iter = i;

return 0;

>

>

tol = resid;

return 1

;

Version 1.2 31 June 27, 1996

cheby.h IML++ cheby.h

Name

Code

cheby.h — Chebyshev Iteration template header file

template < class Matrix, class Vector, class Preconditioner, class Real,

class Type >

int CHEBY (const Matrix &A, Vector &x, const Vector &b,

const Preconditioner &M, int &max_iter, Real &tol.

Type eigmin, Type eigmax)

{

Real resid;

Type alpha, beta, c, d;

Vector p, q, z;

Real normb = norm(b)

;

Vector r = b - A * x;

if (normb == 0.0)

normb = 1

;

if ((resid = norm(r) / normb) <= tol) {

tol = resid;

max_iter = 0;

return 0;

>

c = (eigmax - eigmin) / 2.0;

d = (eigmax + eigmin) / 2.0;

for (int i = 1; i <= max_iter; i++) {

z = M.solve(r); // apply preconditioner

if (i == 1) {

p = z;

alpha = 2.0 / d

;

} else {

beta = c * alpha / 2.0;

beta = beta * beta;

alpha = 1.0 / (d - beta);

p = z + beta * p;

>

q = A * p;

x += alpha * p;

r -= alpha * q;

if ((resid = norm(r) / normb)

tol = resid;

max_iter = i;

return 0;

>

>

tol = resid;

return 1

;

// calculate new beta

// calculate new alpha

// update search direction

// update approximation vector

// compute residual

:= tol) {

// convergence

// no convergence

Version 1.0 32 June 27, 1996

gmres.h IML++ gmres.h

Name

Code

gmres.h — GMRES Iteration template header file

Jfinclude <math.h>

template < class Operator, class Vector, class Preconditioner,

class Matrix, class Real >

int GMRES (const Operator &A, Vector &x, const Vector &b,

const Preconditioner &M, Matrix ftH, int &m, int ftmax_iter.

Real fetol)

{

Real resid;

int i
, j = 1 , k

;

Vector s(m+l), cs(m+l), sn(m+l), w;

Real normb = norm (M . solve (b))

;

Vector r = M.solve(b - A * x)

;

Real beta = norm(r)

;

if (normb == 0.0)

normb = 1;

if ((resid = norm(r) / normb) <= tol) {

tol = resid;

max_iter = 0;

return 0

;

>

Vector *v = new Vector[m+l]

;

while (j <= max_iter) {

v[0] = r * (1.0 / beta);

s = 0.0;

s(0) = beta;

for (i = 0; i < m && j
<= max_iter; i++, j++) {

w = M.solve(A * v[i]);

for (k = 0; k <= i; k++) {

H(k, i) = dot(w, v[k]);

w -= H(k, i) * v[k] ;

>

H(i+1 , i) = norm(w)

;

v[i+l] = w * (1.0 / H(i+1, i));

for (k = 0; k < i; k++)

ApplyPlaneRotation(H(k,i) , H(k+l,i), cs(k), sn(k));

GeneratePlaneRotation(H(i,i) , H(i+l,i), cs(i), sn(i));

ApplyPlaneRotation(H(i, i) , H(i+l,i), cs(i), sn(i));

ApplyPlaneRotation(s(i) , s(i+l), cs(i), sn(i));

if ((resid = abs(s(i+l)) / normb) < tol) {

Update(x, i, H, s, v)

;

tol = resid;

max_iter = j

;

delete [] v;

return 0;

>

>

Version 1.0 33 June 27, 1996

gmres.h IML++ gmres.h

Update (x, m - 1, H, s, v) ;

r = M.solve(b - A * x)

;

beta = norm(r)

;

if ((resid = beta / normb) < tol) {

tol = resid;

max_iter = j

;

delete [] v;

return 0;

>

>

tol = resid;

delete [] v;

return 1

;

>

template < class Matrix, class Vector >

void

Update(Vector &x, int k. Matrix &h. Vector &s. Vector v[])

{

Vector y (s)

;

for (int i = k; i >= 0; i—) {

y (i) /= h(i,i)

;

for (int j
= i - 1; j

>= 0; j—

)

y(j) -= h(j,i) * y (i)

;

for (int j =0; j <= k; j++)

x += v[j] * y (j)

;

}

template < class Real >

Real

abs(Real x)

{

return (x > 0 ? x : -x)

;

>

template<class Real>

void GeneratePlaneRotation(Real &dx. Real &dy, Real fees,

{

(dy == 0. 0) {

cs = 1.0;

sn = 0.0;

else if (abs(dy)

Real temp = dx /

sn = 1.0 / sqrt (

cs = temp * sn;

else {

Real temp = dy /

cs = 1.0 / sqrt (

sn = temp * cs

;

> abs(dx)) {

dy;

1.0 + temp*temp);

dx

;

1.0 + temp+temp)

;

}

Real &sn)

Version 1.0 34 June 27, 1996

gmres.h IML++ gmres.h

template<class Real>

void ApplyPlaneRotation(Real ftdx, Real &dy. Real fees. Real &sn)

Real temp = cs * dx + sn * dy;

dy = -sn * dx + cs * dy;

dx = temp;

>

Version 1.0 35 June 27,
1996

ir.h IML++ ir.h

Name ir.h — Richardson Iteration template header file

Code template < class Matrix, class Vector, class Preconditioner, class Real >

int IR(const Matrix &A, Vector &x, const Vector &b,

const Preconditioner &M, int &max_iter, Real &tol)

{

Real resid;

Vector z;

Real normb = norm(b)

;

Vector r = b - A*x;

if (normb == 0.0)

normb = 1

;

if ((resid = norm(r) / normb) <= tol) {

tol = resid;

max_iter = 0;

return 0;

}

for (int i = 1; i <= max_iter; i++) {

z = M . solve (r)

;

x += z;

r = b - A * x;

if ((resid = norm(r) / normb) <= tol) {

tol = resid;

max_iter = i;

return 0;

}

>

tol = resid;

return 1;

>

Version 1.0 36 June 27, 1996

qmr.h IML++ qmr.h

Name qmr.h — Quasi-Minimal Residual Iteration template header file

Code #include <math.h>

template < class Matrix, class Vector, class Preconditionerl

,

class Preconditioned, class Real >

int

QMR(const Matrix &A, Vector &x, const Vector &b, const Preconditionerl &M1

,

const Preconditioned &M2, int &max_iter, Real &tol)

{

Real resid;

Vector rho (1) , rho_l(l), xi(l)
,
gamma(l)

,
gamma,! (1) , theta(l) , theta_l(l);

Vector eta(l), delta(l), ep(l), beta(l);

Vector r, v_tld, y, w_tld, z;

Vector v, w, y_tld, z_tld;

Vector p, q, p_tld, d, s;

Real normb = norm(b);

r = b - A * x

;

if (normb == 0.0)

normb = 1;

if ((resid = norm(r) / normb) <= tol) {

tol = resid;

max_iter = 0;

return 0

;

>

v_tld = r;

y = Ml . solve (v_tld)

;

rho(0) = norm(y)

;

w_tld = r;

z = M2 . trans_solve (w_tld)

;

xi(0) = norm(z)

;

gamma(O) = 1.0;

eta(0) = -1.0;

theta(0) = 0.0;

for (int i = 1; i <= max_iter;

if (rho(0) == 0.0)

return 2;

if (xi(0) == 0.0)

return 7;

v = (1. / rho(0)) * v_tld;

y = (1. / rho (0)) * y;

w = (1. / xi(0)) * w_tld;

z = (1. / xi(0)) * z;

delta(0) = dot(z, y)

;

if (delta(0) == 0.0)

return 5;

y_tld = M2. solve (y)

;

z_tld = Ml .trans_solve(z)

;

i++) {

// return on breakdown

// return on breakdown

// return on breakdown

// apply preconditioners

Version 1.0 37 June 27, 1996

qmr.h IML++ qmr.h

if (i > 1) {

p = y_tld - (xi(0) * delta(O) / ep(O)) * p;

q = z_tld - (rho(O) * delta(O) / ep(0)) * q;

} else {

p = y_tld;

q = z_tld;

>

p_tld = A * p;

ep(0) = dot(q, p_tld)

;

if (ep(0) == 0.0)

return 6; // return on breakdown

beta(0) = ep(0) / delta(O)

;

if (beta(O) == 0.0)

return 3; // return on breakdown

v_tld = p_tld - beta(0) * v;

y = Ml . solve (v_tld)

;

rho_l(0) = rho(0);

rho(0) = norm(y)

;

w_tld = A.trans_mult(q) - beta(0) * w;

z = M2.trans_solve(w_tld)

;

xi(0) = norm(z)

;

gamma,! (0) = gamma(0);

theta_l(0) = theta(0);

theta(O) = rho(O) / (gamma,! (0) * beta(O));

gamma(O) = 1.0 / sqrt(1.0 + theta(O) * theta(O));

if (gamma(O) == 0.0)

return 4; // return on breakdown

eta(O) = -eta(O) * rho_l(0) * gamma(O) * gamma(O) /

(beta(O) * gamma_l(0) * gamma, 1 (0))

;

if (i > 1) {

d = eta(O) * p + (theta_l(0) * theta_l(0) * gamma(O) * gamma(O)) * d;

s = eta(O) * p_tld + (theta_l(0) * theta_l(0) * gamma(O) * gamma(O)) *

} else {

d = eta(O) * p;

s = eta(O) * p_tld;

>

x += d; // update approximation vector

r -= s; // compute residual

if ((resid = norm(r) / normb) <= tol) {

tol = resid;

max, iter = i;

return 0;

}

>

tol = resid;

return 1 ; //no convergence

>

Version 1.0 38 June 27, 1996

